PERBANDINGAN ALGORITMA K-NEAREST NEIGHBOR, DECISION TREE, DAN NAIVE BAYES UNTUK MENENTUKAN KELAYAKAN PEMBERIAN KREDIT

Tupan Tri Muryono(1*), Ahmad Taufik(2), Irwansyah Irwansyah(3),

(1) STMIK WIDURI
(2) STMIK WIDURI
(3) STMIK WIDURI
(*) Corresponding Author

Abstract


The banking world in terms of providing credit to customers is a regular activity that has a large effect. In its application, non-performing loans or bad loans are often created due to poor credit analysis in the credit granting process, or from bad customers. The purpose of this study is to compare the results of algorithm accuracy between K-Nearest Neighbor (K-NN), Decision Tree, and Naive Bayes which results in the best accuracy will be implemented to determine creditworthiness. The attributes used in this study consisted of 11 attributes, namely marital status, number of dependents, age, last education, occupation, monthly income, home ownership, collateral, loan amount, length of loan and information as result attributes. The methods used in this research are K-Nearest Neighbor, Decision Tree, and Naive Bayes. From the results of evaluation and validation using k-5 fold that has been carried out using RapidMiner tools, the highest accuracy results from a comparison of 3 algorithms is using a decision tree (C4.5) of 98% in the 3rd test.

Keywords


Credits, KNN, Dicision Tree, Naïve Bayes

Full Text:

PDF

References


Ade Davy Wiranata, & Irwansyah, Agus Budiyantara, A. S. (2020). Employee Candidate Selection Using the Saw and Topsis. 3(1), 22–35.

Asrul Sani. (2018). Penerapan Metode K-Means Clustering Pada Perusahaan. Jurnal Ilmiah Teknologi Informasi, 353, 1–7.

Budiyantara, A., Irwansyah, I., Prengki, E., Pratama, P. A., & Wiliani, N. (2020). Komparasi Algoritma Decision Tree, Naive Bayes Dan K-Nearest Neighbor Untuk Memprediksi Mahasiswa Lulus Tepat Waktu. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 265–270. https://doi.org/10.33480/jitk.v5i2.1214

Galih Surono, N. N. P. (2020). Sistem Pendukung Keputusan Penentuan Siswa Teladan Menggunakan Metode Simple Additive Weighting (SAW) Studi Kasus : SD BHAKTI YKKP.

Han, J, Kamber, M, & Pei, J. (2002). Data Mining: Concept and Techniques (2nd ed.). Morgan Kaufmann.

Hanun, N. L., & Achmad Udin Zailani. (2020). Penerapan Algoritma Klasifikasi Random Forest Untuk Penentuan Kelayakan Pemberian Kredit Di Koperasi Mitra Sejahtera. Infotech: Journal of Technology Information, 6(1), 7–14.

https://doi.org/https://doi.org/10.37365/jti.v6i1.61

Mudrajad Kuncoro dan Suhardjono. (2002). Manajemen Perbankan: Teori dan Aplikasi (1st ed.). BPFE.

Muryono, T. T., & Irwansyah. (2020). Implementasi data mining untuk menentukan kelayakan Pemberian kredit dengan menggunakan algoritma K-nearest neighbors. 6(1), 43–48.

https://doi.org/https://doi.org/10.37365/jti.v6i1.78

Muryono, T. T., Irwansyah, I., & Budiyantara, A. (2020). Penentuan Penerimaan Pegawai Menggunakan Metode Perbandingan Eksponensial (Mpe). Infotech: Journal of Technology Information, 6(2), 57–62. https://doi.org/10.37365/jti.v6i2.98

Tupan Tri Muryono, Ahmad Taufik, I. (2021). Perbandingan Algoritma K-Nearest Neighbor, Decision Tree, Dan Naive Bayes Untuk Menentukan Kelayakan Pemberian Kredit.

Turuis, T. F., Pangemanan, S. S., & Affandi, D. (2017). Analisis Prosedur Pemberian Kredit Dengan Menggunakan Prinsip-Prinsip Good Corporate Governance Pada Pt. Bank Sulutgo. Jurnal Berkala Ilmiah Efisiensi, 17(01), 113–123.




DOI: https://doi.org/10.37365/jti.v7i1.104

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.