MENENTUKAN CLUSTER YANG TEPAT DENGAN K-MEANS DALAM RANGKA MENGUKUR EFEKTIVITAS PELAKSANAAN ANGGARAN PADA KEMENTERIAN AGRARIA DAN TATA RUANG/BADAN PERTANAHAN

Indah Dewi Murti Suyoto(1), Tri Rachmadi(2), Lundu Taufik Parulian(3*),

(1) Universitas Budi Luhur
(2) Universitas Budi Luhur
(3) Universitas Budi Luhur
(*) Corresponding Author

Abstract


The effectiveness of budget implementation is one of the benchmarks for the success of a Ministry/Agency in implementing its programs, activities and expenditures in accordance with a predetermined plan. The problem faced is that the achievement in budget execution is often not optimal, one of which is caused by the determination of inappropriate K/L budget allocations resulting in the implementation of activities that are not in accordance with the plan, the realization of budget absorption is not optimal and has the potential to cause idle cash. For this reason, it is necessary to do a mapping in order to identify the main causes or constraints in budget execution using the clustering method. This study tries to find the right cluster with the K-Means algorithm clustering method. The expected results are finding the right cluster model in measuring the effectiveness of budget implementation that can be used when determining budget allocations and preventing idle cash in the budget of the Ministry of Agrarian and Spatial Planning.

 


Keywords


Effectiveness, Budget, Implementation, K-means,Realization,Idle Cash

Full Text:

PDF

References


Anggara, M., Sujiani, H., & Helfi, N. (2016). Pemilihan Distance Measure Pada K-Means Clustering Untuk Pengelompokkan Member Di Alvaro Fitness. Jurnal Sistem Dan Teknologi Informasi, 1(1), 1–6.

Apuilino, F., Seno, I., Achmadi, S., & Industri, F. T. (2021). Penerapan Metode Clustering Pada Analisis Realisasi Pendapatan Asli Daerah Dengan Algoritma K-Means. 5(2).

Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1), 60–64. https://doi.org/10.18196/st.211211

Budiyantara, A., Irwansyah, I., Prengki, E., Pratama, P. A., & Wiliani, N. (2020). Komparasi Algoritma Decision Tree, Naive Bayes Dan K-Nearest Neighbor Untuk Memprediksi Mahasiswa Lulus Tepat Waktu. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 265–270. https://doi.org/10.33480/jitk.v5i2.1214

Fajar Febrian, G., & Herusantoso, K. (2015). Karakterisasi Satuan Kerja Instansi Pemerintah Untuk Meningkatkan Efektifitas Pengelolaan Kas Menggunakan Teknik data mining. 12.

Indah Dewi Murti Suyoto ,Tri Rachmadi, L. T. P. (2022). Menentukan Cluster Yang Tepat Dengan K-Means Dalam Rangka Mengukur Efektivitas Pelaksanaan Anggaran Pada Kementerian Agraria Dan Tata Ruang/Badan Pertanahan Nasional.

Kiat, A. B. H., Azhar, Y., & Rahmayanti, V. (2020). Penerapan Metode K-Means Dengan Metode Elbow Untuk Segmentasi Pelanggan Menggunakan Model Rfm(Recency, Frequency, & Monetary). Jurnal Repositor, 2(7), 945. https://doi.org/10.22219/repositor.v2i7.973

Li, Y., & Wu, H. (2012). A Clustering Method Based on K-Means Algorithm. Physics Procedia, 25, 1104–1109. https://doi.org/10.1016/j.phpro.2012.03.206

Monalisa, S., & Kurnia, F. (2019). Analysis of DBSCAN and K-means algorithm for evaluating outlier on RFM model of customer behaviour. Telkomnika (Telecommunication Computing Electronics and Control), 17(1), 110–117. https://doi.org/10.12928/TELKOMNIKA.v17i1.9394

Novaliendry, D., Hendriyani, Y., Yang, C. H., & Hamimi, H. (2015). The optimized K-means clustering algorithms to analyzed the budget revenue expenditure in Padang. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2(August), 61–66. https://doi.org/10.11591/eecsi.v2i1.771

Republik Indonesia. (2018). Peraturan Menteri Keuangan Republik Indonesia Nomor 195 /PMK.05/2018 Tentang Monitoring dan Evaluasi Pelaksanaan Anggaran Belanja Kementerian Negara/Lembaga.

Sari, D. P., Rosadi, D., Effendie, A. R., & Danardono. (2019). K-means and bayesian networks to determine building damage levels. Telkomnika (Telecommunication Computing Electronics and Control), 17(2), 719–727. https://doi.org/10.12928/TELKOMNIKA.V17I2.11756




DOI: https://doi.org/10.37365/jti.v8i1.126

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.