Akhmad Zamroni(1), Nelly Novitawati(2), Dhian Nur Rahayu(3), Rouly Doharma(4*), Ahmad Taufik(5),

(1) Universitas Budi Luhur Jakarta
(2) Universitas Budi Luhur Jakarta
(*) Corresponding Author


Heart disease is the number one cause of death in the world. Heart disease is a disease due to blockage of the heart's blood vessels which causes a disturbance in the balance between blood supply and demand. Level II Hospital Ridwan Meureksa is a hospital that provides inpatient, outpatient and emergency services. One of the services at the Level II Hospital Moh. Ridwan Meureksa is dealing with matters related to the human heart. In January 2021 to December 2021 at the Moh. Ridwan Meureksa the number of people with heart disease has increased and it is necessary to anticipate the increase in the future. This study aims to classify based on probability or probability from previous data, as well as obtain information about accuracy, precision and recall obtained when testing patient data using the Naive Bayes algorithm. The data used is medical record data of 3970 patients with heart disease cases. The results of the analysis show that symptoms of shortness of breath, rapid pulse, palpitations, weight loss, fever and decreased consciousness can be indicators for diagnosing heart disease. The results of this study are 99.7% and 98.7%, accuracy, 99.8% and 99.3%, precision and 99.8 % and 99.3%.recall.


Classification, Heart disease, Naïve bayes, Data Mining

Full Text:



Chandani, V. (2015). Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film. Journal of Intelligent Systems, 1(1), 56–60.

Dona, D., Maradona, H., & Masdewi, M. (2021). Sistem Pakar Diagnosa Penyakit Jantung Dengan Metode Case Based Reasoning (Cbr). ZONAsi: Jurnal Sistem Informasi, 3(1), 1–12. https://doi.org/10.31849/zn.v3i1.6442

Novianti, D. (2019). Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner. XXI(1). https://doi.org/10.31294.

Nurmasani, A., & Pristyanto, Y. (2021). Algoritme Stacking Untuk Klasifikasi Penyakit Jantung Pada Dataset Imbalanced Class. Pseudocode, 8(1), 21–26. https://doi.org/10.33369/pseudocode.8.1.21-26

Pratama, F. A., Narasati, R., & Amalia, D. R. (2019). Pengaruh Kata Cashback Terhadap Peningkatan Penjualan Menggunakan Data Mining. 3(2), 1–5.

Putri, R. E., Suparti, & Rahmawati, R. (2014). Perbandingan Metode Klasifikasi Naãve Bayes Dan K-Nearest Neighbor Pada Analisis Data Status Kerja Di Kabupaten Demak Tahun 2012. Jurnal Gaussian, 3(4), 831–838.

Rachmawati, C., Martini, S., & Artanti, K. D. (2021). Analisis Faktor Risiko Modifikasi Penyakit Jantung Koroner Di RSU Haji Surabaya Tahun 2019 Modification Risk Factorsa Analysis in Coronary Heart Disease in Haji Hospital Surabaya in 2019. 1–6.

Septiani, A. (2020). Klasifikasi penyakit jantung menggunakan metode recurrent neural network (rnn).

Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. Jurnal Media Informatika Budidarma, 4(2), 437. https://doi.org/10.30865/mib.v4i2.

WHO. (2013). About cardiovascular diseases. Retrieved From https://www.who.int/cardiovascular_diseases/about_cvd/en/. (n.d.).

DOI: https://doi.org/10.37365/jti.v8i2.149


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.