Penerapan Business Intelligence & Online Analytical Processing untuk Data-Data Penelitian dan Luarannya pada Perguruan Tinggi Menggunakan Pentaho
(1) Universitas Muhammadiyah Prof. Dr. Hamka
(2) STMIK Widuri Jakarta
(*) Corresponding Author
Abstract
Utilization of ICT in various sectors is needed, especially those related to business impact and strategy. Information technology is the backbone of the sustainability of businesses, companies, and organizations. Companies that are able to utilize ICT well, therefore indirectly adapt to the times and strive to excel from competitors. The method used refers to the steps recommended by Carlo Vercellis. The software and tools used are open source based, such as Pentaho Data Integration for processing extract, transform, load (ETL), Pentaho Community Edition for dashboards, Pentaho Report Designer for report generation, and Mondrian OLAP for displaying multidimensional data. The results of this study conclude application of business intelligence in universities is very easy and efficient, the use of a dashboard that is presented visually and interactively is very helpful for leaders in viewing existing research data. So it is very helpful for organizations, especially university leaders in making decisions.
Keywords
Full Text:
PDFReferences
Abduldaem, A., & Gravell, A. (2021). Success Factors of Business Intelligence and Performance Dashboards to Improve Performance in Higher Education. ICEIS: Proceedings of the 23rd International Conference on Enterprise Information Systems - Vol.2, 392–402. https://doi.org/10.5220/0010499503920402
Afikah, P., Avorizano, A., Afandi, I. R., & Hasan, F. N. (2022). Implementasi Business Intelligence Untuk Menganalisis Data Kasus Virus Corona di Indonesia Menggunakan Platform Tableau. Pseudocode, 9(1), 25–32. https://doi.org/https://doi.org/10.33369/pseudocode.9.1.25-32
Evaristus Didik Madyatmadja, An Nisa’a Nuramalia, L. K., & Syahlaa Perdina Jamil, W. K. (2021). Data Visualization Of Internet Usage In The Jabodetabek Area.
Evaristus Didik Madyatmadja, Muhammad Nuha Ridho, Adhyaksa Rizky Pratama, Miftahul Fajri, L. N. (2022). Penerapan Visualisasi Data Terhadap Klasifikasi Tindak Kriminal Di Indonesia. https://doi.org/https://doi.org/10.37365/jti.v8i1.127
Firman Noor Hasan, I. ketut S. (2022). Penerapan Business Intelligence & Online Analytical Processing Untuk Data-Data Penelitian Dan Luarannya Pada Perguruan Tinggi Menggunakan Pentaho.
Hasan, F. N. (2019). Implementasi Sistem Business Intelligence Untuk Data Penelitian di Perguruan Tinggi. Prosiding Seminar Nasional TEKNOKA 4, 4(2502), I1–I10.
https://doi.org/10.22236/teknoka.v4i1.3943
Hasan, F. N., & Dwijayanti, M. (2021). Analisis Sentimen Ulasan Pelanggan Terhadap Layanan Grab Indonesia Menggunakan Multinominal Naïve Bayes Classifier. Jurnal Linguistik Komputasional, 4(2), 52–58. https://doi.org/https://doi.org/10.26418/jlk.v4i2.61
Hasan, F. N., & Febriandirza, A. (2021). Perancangan Data Warehouse Untuk Data Penelitian di Perguruan Tinggi Menggunakan Pendekatan Nine Steps Methodologhy. Pseudocode, VIII(1), 49–57. https://doi.org/10.33369/pseudocode.8.1.49-57
Hasan, F. N., Nofendri, Y., Sholeh, M., & Affandi, I. R. (2022). Pendampingan Pembuatan Video Pembelajaran Menggunakan Open Broadcast Software Bagi Guru. Dinamisia: Jurnal Pengabdian Kepada Masyarakat, 6(3), 806–814.
https://doi.org/https://doi.org/10.31849/dinamisia.v6i3.9785
Hindrayani, K. M., Prismahardi, A. R., Tresna, M. F., & Maya, E. (2020). Business Intelligence for Educational Institution : A Literature Review. IJCONSIST: International Journal of Computer, Network Security and Information System, 2(1), 22–25. https://doi.org/https://doi.org/10.33005/ ijconsist.v2i1.32
Jaradat, Z., Al-Dmour, A., Alshurafat, H., Al-Hazaima, H., & Al Shbail, M. O. (2022). Factors influencing business intelligence adoption: evidence from Jordan. Journal of Decission Systems, 31(4). https://doi.org/https://doi.org/10.1080/12460125.2022.2094531
Lestari, R. P., Ramadhan, R. A. C. L., Rahayu, I. M., & Amrozi, Y. (2021). Desain Business Intelligence di Era 4.0 (Studi Kasus Perancangan Dashboard IAPT 3.0 Kriteria 3). Infotech, 1(1), 1079–1092.
Lokaadinugroho, I., Girsang, A. S., & Burhanudin. (2021). Tableau Business Intelligence Using the 9 Steps of Kimball’s Data Warehouse & Extract Transform Loading of the Pentaho Data Integration Process Approach in Higher Education. EMACS: Engineering, Mathematics and Computer Science Journal, 3(1), 1–11.
https://doi.org/https://doi.org/10.21512/emacsjournal.v3i1.6816
Patel, J. A., & Sharma, P. (2020). Online Analytical Processing for Business Intelligence in Big Data. Big Data, 8(6). https://doi.org/https://doi.org/10.1089/big.2020.0045
Rakhmatov, D., & Arzikulov, F. (2021). Prospects for the introduction of artificial intelligence technologies in higher education. ACADEMICIA: An International Multidisciplinary Research Journal, 11(2), 929–934. https://doi.org/10.5958/2249-7137.2021.00468.7
Sakas, D. P., Nasiopoulos, D. K., & Taratuhina, Y. (2019). Business Intelligence and Modelling Unified Approach with Simulation and Strategic Modelling in Entrepreneurship. IC-BIM: International Conference on Business Intelligence & Modelling.
Sidik, F., Suhada, I., Anwar, A. H., & Hasan, F. N. (2022). Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier. Jurnal Linguistik Komputasional, 5(1), 34–43. https://doi.org/https://doi.org/10.26418/jlk.v5i1.79
Song, Y., Arnott, D., & Gao, S. (2022). Business intelligence and analytics (BI&A) research has been dominated by conceptual studies, simulations, and case studies, but as the field matures, experimentation is increasing. The use of students as surrogates for managers in experiments is a widesp. Journal of Decission Systems, 31(3), 280–304. https://doi.org/https://doi.org/10.1080/12460125.2020.1838037
Supriyatna, A. (2016). Sistem Analisis Data Mahasiswa Menggunakan Aplikasi Online Analytical Processing (Olap) Data Warehouse. Jurnal Pilar Nusa Mandiri, 12(1), 62–71. https://doi.org/https://doi.org/10.33480/pilar.v12i1.260
Vercellis, C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making (1st ed.). Wiley Publishing, Inc.
DOI: https://doi.org/10.37365/jti.v8i2.143
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.