DATA VISUALISASI TINGKAT KENAIKAN LIMBAH SAMPAH DI INDONESIA

Evaristus Didik Madyatmadja(1*), Samuel Axel Widjaja(2), Joseph Priadi Haryo Pangukir(3), Matthew Budiharjo(4), Rianky Rianky(5), Oktavian Heryanda(6),

(1) Scopus ID [56010497200] Universitas Bina Nusantara
(2) Universitas Bina Nusantara Jakarta
(3) Universitas Bina Nusantara Jakarta
(4) Universitas Bina Nusantara Jakarta
(5) Universitas Bina Nusantara Jakarta
(6) Universitas Bina Nusantara Jakarta
(*) Corresponding Author

Abstract


Waste or garbage is a leftover material that has no use or is disposed of after daily activities by humans. The purpose of this research is to know whether waste in Indonesia has increased or not in the last three years and to find out what type of waste is the most in the last three years, and finally, what province has the largest pile of waste in the last three years. This research uses the method that has some procedures. They are acquired, parse, filter, mine, represent, refine, and interact. The visualization data used is using Microsoft Excel. There are two pieces of data, data on waste generation per year and data on the most types of waste from 2020 to 2022 in Indonesia based on SIPSN data. Data from SIPSN already in Microsoft Excel is inserted into Power BI by selecting "Get data ''; The data is processed into a table and started to be able to filter the data that has appeared. Data is then filtered to remove unwanted data. Waste accumulation in Indonesia has tended to decrease in the last three years. Various provinces in Indonesia have different figures depending on the population and advancement of infrastructure in the province. Last three years, food waste has become the highest number of waste. People aren't aware that the food scraps they consume can affect the total amount of waste/garbage. DKI Jakarta Province is the province that has the most waste pile. It is because DKI Jakarta province is a province that has a large population.


Keywords


Garbage, Data Visualization, Population

Full Text:

PDF

References


A Putri, FD Lengkong (2018). Efektivitas pelaksanaan program ayo nabung sampah dalam menjaga dan memelihara kebersihan lingkungan di kecamatan. E_Journal Universitas Sam Ratulangi.

Cui, G., & Bhat, S. A. B. b. (2023, January 27). Solid waste management during the COVID-19 pandemic. Fate of Biological Contaminants During Recycling of Organic Wastes. https://www.sciencedirect.com/science/article/abs/pii/B978032395998800008X

David Donohoe, Eamon Costello. Data Visualisation Literacy in Higher Education: An Exploratory Study of Understanding of a Learning Dashboard Tool. Volume 15, Number 17, Sep 11, 2020 ISSN 1863-0383 Publisher: International Journal of Emerging Technology in Learning, Kassel, Germany.

Finandhita, A., Wibowo, O.M. (2018). Visualisasi Data Harga Komoditas Pangan (Studi Kasus : Website Dinas Tanaman Pangan Dan Hortikultura Provinsi Jawa Barat. KOMPUTA: JURNAL ILMIAH KOMPUTER DAN INFORMATIKA. Vol. 7 No. 2, DOI 10.34010/KOMPUTA.V7I2.3038

Kurniawan, J. et al. (2023). Analisis dan Visualisasi Data. CV Widina Media Utama

Kurniawan, T. A., Meidiana, C., Othman, M. H. D., Goh, H. H., & Chew, K. W. (2022, November 23). Strengthening waste recycling industry in Malang (Indonesia): Lessons from waste management in the era of industry 4.0. Journal of Cleaner Production. https://www.sciencedirect.com/science/article/abs/pii/S0959652622048703.

learn.microsoft.com. Pemotong Dalam Layanan Power BI. (2023). https://learn.microsoft.com/id-id/power-bi/consumer/end-user

Madyatmadja, E. D., Ridho, M.N., Pratama, A. R., Fajri, M., Novianto, L. (2022). Penerapan Visualisasi Data Terhadap Klasifikasi Tindak Kriminal Di Indonesia. https://doi.org/10.37365/jti.v8i1.127

Powerbi.microsoft.com. What Is Power BI? Definition and Features. (2023). https://powerbi.microsoft.com/en-us/what-is-power-bi/.

Prakash, K. B. (2022). Data Visualization. Data Science Handbook, 23–55. https://doi.org/10.1002/9781119858010.ch2

Prasetyo , D. A. (2020). Strategi Pemerintah Menanggulangi Pencemaran Sampah Di Kota Surabaya.

R Sufia and R D Arisona (2021). IOP Conf. Ser.: Earth Environ. Sci. 747 012030.

Ramasamy, D., Sarasua, C., Bacchelli, A., & Bernstein, A. (2023). Visualising data science workflows to support third-party notebook comprehension: An empirical study. Empirical Software Engineering, 28(3). https://doi.org/10.1007/s10664-023-10289-9

Risaldi, K. Y. N. (2023). Studi evaluasi dan pengembangan tempat pembuangan sampah metode sanitary landfill di tpa kota Probolinggo. Skripsi UNISMA.

SIPSN - Sistem Informasi Pengolahan Sampah Nasional. (2022). https://sipsn.menlhk.go.id/sipsn/.

SIPSN - Sistem Informasi Pengolahan Sampah Nasional. (2022). data komposisi. https://sipsn.menlhk.go.id/sipsn/public/data/komposisi.

SIPSN - Sistem Informasi Pengolahan Sampah Nasional. (2022). data timbulan. https://sipsn.menlhk.go.id/sipsn/public/data/timbulan.

Thuhin K. Dey, Md. Rasel, Tapati Roy, Md. Elias Uddin, Biplob K. Pramanik, Mamun Jamal, Post-pandemic micro/nanoplastic pollution: Toward a sustainable management, Science of The Total Environment, Volume 867,2023,161390. (2023). ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2023.161390.




DOI: https://doi.org/10.37365/jti.v9i2.200

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. .

klik4d