SISTEM PENDUKUNG KEPUTUSAN UNTUK MENENTUKAN PRODUK IDEAL PADA REMANUFACTURE TONER MENGGUNAKAN METODE FUZZY TSUKAMOTO

Erizal Erizal(1*), Firman Noor Hasan(2),

(1) Program Studi Sistem dan Teknologi Informasi, Universitas Muhammadiyah Prof. Dr. Hamka
(2) Program Studi Teknik Informatika, Universitas Muhammadiyah Prof. Dr. Hamka
(*) Corresponding Author

Abstract


In the business world, every business owner can of course experience losses when running their business. These losses can be caused by various kinds of obstacles, one of which is the accumulation of products that are of little interest so that only a few are sold. Therefore, we need a system that can determine the ideal sales product so that it can minimize losses and product buildup and help buyers recommend products to buy. This research uses Tsukamoto's fuzzy approach and the use of MatLab as a computerized computing tool, which allows careful comparison between manual calculations and tools. The results obtained provide a recommendation that the CZ192A Toner Remanufacture product is an Ideal product, the CE255A Toner Remanufacture product is a Non-Ideal product, and the Q7516A Toner Remanufacture product is an Ideal product.


ABSTRAK

Dalam menjalani dunia perbisnisan, setiap pemilik badan usaha tentunya dapat mengalami kerugian ketika menjalankan bisnisnya. Kerugian tersebut dapat disebabkan oleh berbagai macam kendala salah satunya adalah penumpukan produk yang sedikit peminatnya sehingga hanya beberapa yang laku terjual. Oleh karena itu dibutuhkan sebuah sistem yang dapat menentukan produk penjualan yang ideal sehingga dapat meminimalisir kerugian serta penumpukan produk serta membantu pembeli dalam merekomendasikan produk yang akan dibeli. Penelitian ini menggunakan pendekatan fuzzy tsukamoto dan penggunaan MatLab sebagai alat komputasi terkomputerisasi, yang memungkinkan perbandingan yang cermat antara perhitungan manual dan tools. Hasil yang diperoleh memberikan rekomendasi bahwa produk Remanufacture Toner CZ192A merupakan produk Ideal, produk Remanufacture Toner CE255A merupakan produk Tidak Ideal, dan produk Remanufacture Toner Q7516A merupakan produk Ideal.


Keywords


Fuzzy Tsukamoto, Ideal Product, Decission Support System, Remanufacture Toner.

Full Text:

PDF

References


Afandi, I. R., Hanif, I. F., Hasan, F. N., Sinduningrum, E., Halim, Z., & Pratiwi, N. (2022). Analisis Sentimen Opini Masyarakat Terkait Penyelenggaraan Sistem Elektronik Menggunakan Metode Logistic Regression. Jurnal Linguistik Komputasional, 5(2), 77–84. https://doi.org/https://doi.org/10.26418/jlk.v5i2.103

Alamsyah, D. P., Ramdhani, Y., & Nurbeni, R. D. (2022). Implementation of the Fuzzy Inference System Tsukamoto Method in the Decision Support System. ISESD: 2022 International Symposium on Electronics and Smart Devices, 01–06. https://doi.org/10.1109/ISESD56103.2022.9980745

Assyam, H. D. Al, & Hasan, F. N. (2023). Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(1), 341–349. https://doi.org/https://doi.org/10.30865/klik.v4i1.957

Aulia, D., & Zahra, A. (2024). Model Application Based on Fuzzy Logic Tsukamoto With Certainty Factor for Early Diagnosis on Corona Virus (COVID-19). JATIT: Journal of Theoritical and Applied Information Technology, 102(5), 2059–2070. https://doi.org/http://www.jatit.org/volumes/Vol102No5/29Vol102No5.pdf

Candra, D. G. A., Nuruzzaman, M. T., ’Uyun, S., Sugiantoro, B., & Pratiwi, M. (2023). Analysis of Factors Affecting the Students’ Acceptance Level of E-Commerce Applications in Yogyakarta Using Modified UTAUT 2. IJID: International Journal on Informatics for Development, 12(1), 326–337. https://doi.org/https://doi.org/10.14421/ijid.2023.3990

Dewi, M. T., Zaaidatunni’mah, U., Hakim, M. F. Al, & Jumanto, J. (2021). Implementation of Fuzzy Tsukamoto in Employee Performance Assessment. JOSCEX: Journal of Soft Computing Exploration, 2(2), 143–152. https://doi.org/https://doi.org/10.52465/joscex.v2i2.52

Farhan, D., & Sulianta, F. (2023). Implementation of Fuzzy Tsukamoto Logic to Determine the Number of Seeds Koi Fish in the Sukamanah Cianjur Farmer’s Group. JUTIF: Jurnal Teknik Informatika, 4(1), 187–198. https://doi.org/https://doi.org/10.52436/1.jutif.2023.4.1.477

Gloria, P., & Sediyono, E. (2022). Perancangan Sistem Rekomendasi Pemberian Beasiswa dengan Metode Fuzzy Tsukamoto. ITA: Journal of Information Technology Ampera-Journal-ITA, 3(2), 124–147. https://doi.org/10.51519/journalita.volume3.isssue2.year2022.page124-147

Hasan, F. N., & Ariyansah, R. (2024). Utilization of the FP-Growth Algorithm on MSME Transaction Data : Recommendations for Small Gifts from The Padang Region. JTI: Jurnal Teknik Informatika, 17(1), 70–78. https://doi.org/https://doi.org/10.15408/jti.v17i1.37966

Hasan, F. N., Aziz, A. S., & Nofendri, Y. (2023). Utilization of Data Mining on MSMEs using FP-Growth Algorithm for Menu Recommendations. MATRIK: Jurnal Manajemen, Teknik Informatika, Dan Rekayasa Komputer, 22(2), 261–270. https://doi.org/10.30812/matrik.v22i2.2166

Hasan, F. N., & Sudaryana, I. K. (2022). Penerapan Business Intelligence & Online Analytical Processing untuk Data-Data Penelitian dan Luarannya pada Perguruan Tinggi Menggunakan Pentaho. INFOTECH: Journal of Technology Information, 8(2), 85–92. https://doi.org/https://doi.org/10.37365/jti.v8i2.143

Ilham, W., & Fajri, N. (2020). Penentuan Jumlah Produksi Tahu dengan Menggunakan Metode Fuzzy Tsukamoto pada UKM Abadi Berbasis Web. DigIT: Jurnal Ilmiah Digital of Information Technology, 10(1), 71–82. https://doi.org/https://doi.org/10.51920/jd.v10i1.158

Nugraha, E., Wibawa, A. P., Hakim, M. L., Kholifah, U., Dini, R. H., & Irwanto, M. R. (2019). Implementation of fuzzy tsukamoto method in decision support system of journal acceptance. Journal of Physics: Conference Series, 1280(2), 022031. https://doi.org/10.1088/1742-6596/1280/2/022031

Nugroho, R. P., Setiawan, B. D., & Furqon, M. T. (2019). Penerapan Metode Fuzzy Tsukamoto untuk Menentukan Harga Sewa Hotel (Studi Kasus: Gili Amor Boutique Resort, Dusun Gili Trawangan, Nusa Tenggara Barat). JPTIIK: Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(3), 2581–2588. https://doi.org/https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4755

Pasaribu, N. S., Hardinata, J. T., & Qurniawan, H. (2021). Application of The Fuzzy Tsukamoto Method in Determining Household Industry Products. JAIEA: Journal of Artificial Intelligence and Engineering Applications, 1(1), 71–75. https://doi.org/https://doi.org/10.59934/jaiea.v1i1.57

Pradana, F., Bachtiar, F. A., & Widasari, E. R. (2022). Fuzzy Tsukamoto Implementation to Detect Physiological Condition on IoT-Based e-Learning Users. IJIET: International Journal of Information and Education Technology, 12(7), 663–667. https://doi.org/10.18178/ijiet.2022.12.7.1668

Purbasari, W., Natsir, F., Sulistyohati, A., Hasan, F. N., Fitria, Kamayani, M., … Bani, F. C. D. (2024). Sistem Basis Data (W. Andriyani & N. R. Fera, eds.). Retrieved from https://books.google.co.id/books/about?id=omcFEQAAQBAJ&redir_esc=y

Putra, Y. W. S., Dawis, A. M., Novi, Natsir, F., Fitria, Windhiyanti, A. A. S., … Maniah. (2023). Pengantar Aplikasi Mobile (Pertama; W. Andriyani & Erlangga, eds.). Retrieved from https://penerbithaura.com/product/pengantar-aplikasi-mobile/

Rindengan, A. J., & Langi, Y. A. R. (2019). Sistem Fuzzy (First Edit). Retrieved from https://studylib.net/doc/25929181/06-sistem-fuzzy-2019

Sani, A., Samuel, Suryadi, D., Hasan, F. N., Wiranata, A. D., & Aisyah, S. (2023). Predicting the Success of Garment Sales on Transaction Data using the Classification Method with the Naïve Bayes Algorithm. ICCoSITE: 2023 International Conference on Computer Science, Information Technology and Engineering, 234–239. https://doi.org/10.1109/ICCoSITE57641.2023.10127693

Suartana, G., Mesterjon, M., & Elfianty, L. (2023). Application of Recommendations for Selection of Outstanding Students at Seluma 06 State Senior High School Through the Fuzzy Tsukamoto Approach. JMCS: Jurnal Media Computer Science, 2(1), 23–30. https://doi.org/https://doi.org/10.37676/jmcs.v2i1.3345

Tarigan, D. P., Wantoro, A., & Setiawansyah. (2020). Sistem Pendukung Keputusan Pemberian Kredit Mobil Dengan Fuzzy Tsukamoto (Studi Kasus: PT. Clipan Finance). TELEFORTECH: Journal of Telematics and Information Technology, 1(1), 21–30. https://doi.org/https://doi.org/10.33365/tft.v1i1.870

Wardoyo, R., & Yuniarti, W. D. (2020). Analysis of Fuzzy Logic Modification for Student Assessment in e-Learning. IJID: International Journal on Informatics for Development, 9(1), 29–36. https://doi.org/https://doi.org/10.14421/ijid.2020.09105

Wijaya, C. F., Magdalena, L., & Ilyasa, R. (2021). Sistem Prediksi Kondisi Kesehatan Pasien Penderita Talasemia dengan Menggunakan Logika Fuzzy Tsukamoto. JuTISI: Jurnal Teknik Informatika Dan Sistem Informasi, 7(3), 565–582. https://doi.org/https://doi.org/10.28932/jutisi.v7i3.3924

Yudatama, U., Syamsiyah, N., Irmawati, Wiranata, A. D., Imanda, R., Ma’sum, H., … Puspowati, R. I. A. (2023). Memahami Teknologi Informasi: Prinsip, Pengembangan, dan Penerapan (1st ed.; H. H. Solihin, Z. Munawar, & S. Siregar, eds.). Retrieved from https://books.google.co.id/books/about?id=P1HcEAAAQBAJ




DOI: https://doi.org/10.37365/jti.v10i1.246

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. .

klik4d